
Security Risk 
Assessment and Management as
Technical Debt

Kalle Rindell
kakrind@utu.fi

Johannes Holvitie
johannes.holvitie@tyks.fi

mailto:kakrind@utu.fi
mailto:johannes.holvitie@tyks.fi


Index

1. Software Security
• What, when, who, why

2. Technical Debt and Security Risk
• Concepts and management

3. Security Debt
• Types, consequences

4. Conclusions and future work



Software security

• Information security  application security  software security
• Development-time activities to ensure the following:

a) software security requirements are adequate
b) software meets the requirements
c) sufficient security assurance is produced 

• Secure design and coding practices
• Security functionality and features (e.g. authentication, encryption)
• Security testing: validation and verification of the above



Technical debt

• TD captures trade-offs between development-driving aspects (e.g. release 
time vs code structuring)

• (In)voluntary development-time decisions affecting software's internal 
quality

• Reduced internal quality may yield short-term benefits, but it can slow and 
potentially stop future development

• Principal: resources required for refactoring or redesign
• Interest: future development needs to adhere to lowered internal quality
• Risk: in literature, only direct labor costs and business risk
• How does security risk change the appraisal of TD?
• How can TD management help managing the security risk?



Security Debt; Security risk sensitive TD

• Notable challenges in TD management include identification, 
management, and tools for the previous

• Security engineering has the tools and techniques, but has issues in 
management: measurement/appraisal is a central problem



Theoretical model and benefits

• TD prominently borrows from economics: the portfolio approach 
(Markovitz, 1952) applied to TD by Guo (2011)

• A portfolio is a list of TD items: extended by including security risk
• TD item in a SW artefact (depending on debt type) may consist of 

• Identifying information (ID, location)
• Work amount estimate (LoC, complexity, velocity-dependent time estimate)
• Changes to related components (code, design, tests, documentation…)
• Security risk (affected process/asset, impact, estimated probability)

• Increase the visibility and manageability of security risk, decrease the 
overall security risk



Key issues

• Prioritization: after identifying and making the estimates, how does a 
TD item get placed into the work queue? How is the queue updated?

• Compound effect: big security risks get typically immediate attention. 
How about the small ones? How do they add up over TD items?

• Interest: TD has direct cost-related consequences, but its payback can 
typically be planned ahead. Security flaw or bug (i.e. external quality) 
is intentionally triggered, and may lay dormant indefinitely. 

• Collateral damage: amount of work not only to repair the SW but to 
deal with the spillover and indirect effects.



Conclusion

• Identification and repayment are "trivial" – assessment is not
• Tool support needed – e.g. SonarQube
• Security risk is a theoretical concept with concrete consequences

• Probability: a guess based on current security information. 
• Impact: another guess based on business projections.
• Work estimate: an educated guess based on whichever model is used 

(possibly input with historical data).

• Like for any conceptual model, empirical data is required
• Domain, technology and organization – down to team and role level?



Thank you.

Kalle Rindell
kakrind@utu.fi

Johannes Holvitie
johannes.holvitie@tyks.fi

mailto:kakrind@utu.fi
mailto:johannes.holvitie@tyks.fi

	Security Risk �Assessment and Management as�Technical Debt
	Index
	Software security
	Technical debt
	Security Debt; Security risk sensitive TD
	Theoretical model and benefits
	Key issues
	Conclusion
	Slide Number 9

